
VIBE CODERS FIELD MANUAL
Written by: David Levine Bramante​
 For: Inexperienced but ambitious AI-assisted developers ("Vibe
Coders")​
 Version: 1.0​
 Date: July 9, 2025​
 Purpose: To help you build websites and apps fast, using AI tools
with structure, clarity, and confidence—without getting lost,
overwhelmed, or burned out.

WHY THIS GUIDE EXISTS

If you're trying to launch a website, SaaS product, online platform,
or even a personal portfolio—but you're not a "real" developer (yet),
this system is for you.

I'm not a trained coder either. But I've launched real products with
real revenue by using AI like Claude, GPT-4, and Cursor as my
programming co-pilot. I built this guide to keep myself focused,
organized, and shipping fast. Now you can use it too.

This is not a course. This is not theory. This is how I'm building
actual businesses and income—from real estate tools to AI image
platforms to content marketplaces—and helping others do the same.

WHO THIS IS FOR

You're a Vibe Coder if:

●​ You're using AI to help write code, build software, or launch
products

●​ You're excited to move fast and learn by doing
●​ You want structure and sanity—not chaos, confusion, or

half-built apps
●​ You're building for yourself or your business, not to pass a

coding interview

You might be:

●​ A solo founder trying to launch a startup
●​ A creator building an app or tool around your brand
●​ A freelancer automating client work
●​ A real estate agent, artist, educator, or entrepreneur trying

to scale up with AI

WHAT THIS GUIDE GIVES YOU

This setup guide gives you a clear, structured system to:

●​ Get started fast and stay focused
●​ Talk to AI coding tools the right way (no more "bad answers")
●​ Prevent common mistakes that waste time and money
●​ Keep your project clean, organized, and launch-ready
●​ Hand off work between tools, models, or teammates without

confusion

This is your operating manual for building real software using AI,
without getting lost or stuck.

THE VIBE CODING PHILOSOPHY

We build. We ship. AI is our most powerful collaborator.

Two Work Modes:

1. Promptsmithing (Think + Plan)

●​ Ask smart questions
●​ Design the architecture
●​ Create your database, endpoints, and layout

2. Codestreaming (Build + Ship)

●​ Work inside your local editor (VS Code, Cursor)
●​ Build one file at a time
●​ Ship fast with focus

The only metric that matters: Did you ship?

THE VIBE CHECK PROMPT

Before any coding session, copy/paste this into your AI assistant
(Claude, GPT-4, Gemini, etc.):

Act as my expert pair programmer. Before we begin, you must read and
understand these documents to get full context on my project:

- /.ai/ACTIVE_TASK.md – What we're doing now

- /.ai/AI_RULES.md and /docs/SECURITY.md – Guardrails to follow

- /docs/ARCHITECTURE.md, /docs/DB_SCHEMA.md, /docs/API_REFERENCE.md –
How the system works

- /.ai/DECISIONS.md, /.ai/HANDOFF.md – History and handoffs

Let me know when you've absorbed this and I'll give you your first
task.

THE 12-FILE SYSTEM (EXPLAINED)

Here's how your project folders should be set up. This structure
keeps AI, code, docs, and your mental clarity in sync:

[project-name]/

├── .ai/ # Your AI's private memory (DO NOT push
to GitHub)

│ ├── AI_RULES.md # What your AI must follow

│ ├── ACTIVE_TASK.md # What you're working on right now

│ ├── DECISIONS.md # Past choices that shouldn't change

│ └── HANDOFF.md # Use when switching tools or teammates

├── docs/ # Long-term project reference
(Git-tracked)

│ ├── PROJECT_SETUP_GUIDE.md

│ ├── ARCHITECTURE.md # How your app is structured

│ ├── API_REFERENCE.md # All backend routes explained

│ ├── DB_SCHEMA.md # What tables you use and how they
relate

│ ├── DEPLOYMENT.md # How to go live

│ ├── SECURITY.md # How to protect secrets

│ └── TROUBLESHOOTING.md # Fixes for common bugs

├── tasklog.md # Day-by-day activity tracker

├── frontend/ # Your React app

├── backend/ # Your Express.js server

└── README.md # Project overview for GitHub

Important: Add this to your .gitignore file:

.ai/

.env

.env.local

DEV TOOLS & STACK (BEGINNER-FRIENDLY)

You don't need to be an expert. This is what we use to get real stuff
built:

●​ Frontend: React 18, React Router 6
●​ Backend: Node.js, Express
●​ Database: PostgreSQL with UUIDs
●​ AI Tools: Claude (browser), Claude Code (Cursor), GPT-4,

DeepSeek
●​ Editor: VS Code or Cursor
●​ Git: GitHub for version control
●​ Deployment: DigitalOcean, Vercel, or similar
●​ Auth, Payments, Email: Choose when needed

HOW TO TALK TO YOUR AI

Every time you ask AI for help, use this format:

Context: We're building [Project Name], a full-stack app using React,
Node, and PostgreSQL.

Task: I need help fixing a bug in frontend/src/components/Signup.js

Constraints: Follow all project rules from /.ai/AI_RULES.md and use
only one file at a time.

AI works best when you're clear, specific, and structured.

AI MODEL SWITCHING RULES

If you ever stop working and come back later (or switch tools), use
the /.ai/HANDOFF.md file:

Last Session Summary

- Completed: [e.g. "Finished Login.js UI"]

- Working on: [e.g. "Connecting signup form to backend"]

- Next steps: [e.g. "Create POST /signup endpoint"]

- Blockers: [e.g. "Not sure if JWT token flow is correct"]

- Context: [Any unusual decisions or fixes]

LOCAL SETUP (FOR FIRST-TIMERS)

Install these tools first:

Check if Node.js is installed:

node -v

Check if PostgreSQL is installed:

psql --version

Clone and setup your project:

Clone the project repository

git clone [REPO_URL]

cd [Project Name]

Install frontend dependencies

npm install --prefix frontend

Install backend dependencies

npm install --prefix backend

To run your project:

Open three terminal windows:

Terminal 1 - Frontend:

cd frontend

npm start

Terminal 2 - Backend:

cd backend

npm start

Terminal 3 - Database (optional):

psql "[YOUR_DATABASE_URL]"

COMMON BUGS & FIXES

Port already in use?

Find what's using the port:

lsof -i :5001

Kill the process (replace [PID] with the actual process ID):

kill -9 [PID]

JSX error?

Instead of this (which causes errors):

<><div>Hello</div></>

Use this:

<React.Fragment><div>Hello</div></React.Fragment>

Database connection not working?

Test your connection:

psql [your_connection_string] -c "SELECT 1"

More fixes available in /docs/TROUBLESHOOTING.md

SHIP IT: DEPLOYMENT FLOW

Step 1: Build the frontend

cd frontend

npm run build

Step 2: Create and push to staging branch

git checkout -b staging

git add .

git commit -m "Prepare for staging deployment"

git push origin staging

Step 3: Test on staging

Visit your staging URL and test all features

Step 4: Merge to main

git checkout main

git merge staging

git push origin main

See /docs/DEPLOYMENT.md for full deployment steps.

FINAL REMINDERS FOR VIBE CODERS

1.​Start small. One feature at a time.
2.​Don't skip the Vibe Check Prompt
3.​Never work on multiple files at once unless you really know what

you're doing
4.​Avoid tech debt early—stay clean, stay lean
5.​If stuck, ask your AI—but be specific and structured
6.​Keep shipping. Every working feature builds momentum

ATTRIBUTION & LICENSE

Built by: David Levine Bramante​
 Use this guide in your own projects. Credit appreciated.​
 License: MIT License – Free to use, adapt, remix.

Contact:​
 www.davidbramante.com​
 davidbramante@gmail.com​
 Mobile: (310) 906-5459

	VIBE CODERS FIELD MANUAL
	WHY THIS GUIDE EXISTS
	WHO THIS IS FOR
	WHAT THIS GUIDE GIVES YOU
	THE VIBE CODING PHILOSOPHY
	Two Work Modes:

	THE VIBE CHECK PROMPT
	THE 12-FILE SYSTEM (EXPLAINED)
	DEV TOOLS & STACK (BEGINNER-FRIENDLY)
	HOW TO TALK TO YOUR AI
	AI MODEL SWITCHING RULES
	LOCAL SETUP (FOR FIRST-TIMERS)
	Install these tools first:
	Clone and setup your project:
	To run your project:

	COMMON BUGS & FIXES
	Port already in use?
	JSX error?
	Database connection not working?

	SHIP IT: DEPLOYMENT FLOW
	Step 1: Build the frontend
	Step 2: Create and push to staging branch
	Step 3: Test on staging
	Step 4: Merge to main

	FINAL REMINDERS FOR VIBE CODERS
	ATTRIBUTION & LICENSE

